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Abstract
In preclinical toxicology studies, a “stage-aware” histopathological evaluation of testes is recognized as the most sensitive method
to detect effects on spermatogenesis. A stage-aware evaluation requires the pathologist to be able to identify the different stages of
the spermatogenic cycle. Classically, this evaluation has been performed using periodic acid-Schiff (PAS)-stained sections to visualize
the morphology of the developing spermatid acrosome, but due to the complexity of the rat spermatogenic cycle and the subtlety
of the criteria used to distinguish between the 14 stages of the cycle, staging of tubules is not only time consuming but also requires
specialized training and practice to become competent. Using different criteria, based largely on the shape and movement of the
elongating spermatids within the tubule and pooling some of the stages, it is possible to stage tubules using routine hematoxylin and
eosin (H&E)-stained sections, thereby negating the need for a special PAS stain. These criteria have been used to develop an
automated method to identify the stages of the rat spermatogenic cycle in digital images of H&E-stained Wistar rat testes. The
algorithm identifies the spermatogenic stage of each tubule, thereby allowing the pathologist to quickly evaluate the testis in a stage-
aware manner and rapidly calculate the stage frequencies.
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Introduction

Examination of rodent testes with an awareness of staging has

been a regulatory recommendation for certain types of precli-

nical toxicity studies for many years.1 Generally, this has been

performed on specially prepared periodic acid-Schiff (PAS)

stained sections by a pathologist who has received training

on how to stage testes. The reason for using PAS-stained testes

is so that the details of the developing acrosome of the round

spermatid (RSp) can be visualized and used to distinguish

between the first 8 stages (stages I-VIII) of the 14 stages of

the spermatogenic cycle of the rat. The final 6 stages of the

spermatogenic cycle (stages IX-XIV) are identified using the

changing shape of the elongating spermatid head. Although not

the only classification system for rodent spermatogenesis, this

14-stage scheme, described by Leblond and Clermont in 1952,2

has become the most commonly used method to stage rodent

testes. While it is a very good and accurate method to stage

rodent testes, it is not very practical for inclusion in routine

histopathological assessment, partly because of technical diffi-

culties in getting the PAS to stain the acrosomic structures

adequately but also because distinguishing between the 14

stages of the spermatogenic cycle is difficult and requires

significant training and expertise. One of the main reasons for

staging tubules during histopathological assessment of sperma-

togenesis is to allow the pathologist to identify subtle distur-

bances in spermatogenesis and recognize when a cell

population that should be present is missing, or when a cell

population is inappropriately present.3 However, this “stage-

awareness” does not require such detailed staging as the

Leblond and Clermont2 scheme affords. Identification of these

subtle changes can be achieved, as long as the pathologist is

familiar with the overall cell composition of tubules in the main

phases of the cycle, that is, early (stages I-VI), mid (stages VII-

VIII), and late (stages IX-XIV) stages of the spermatogenic

cycle. This level of stage recognition can be accomplished

relatively easily using hematoxylin and eosin (H&E) staining.4
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An important advantage of performing staging on H&E-stained

testes is that these sections are routinely available for most

toxicity studies and negate the need to perform special PAS

staining. The detailed criteria used for staging H&E-stained rat

testes have been described previously by Creasy and Chapin.4

They utilize the changing shape and position of the elongated

spermatid in the early stages (stages I-VI), the size and position

of the residual body (RB) for mid stages (VII-VIII), and the

shape and morphology of the elongating spermatid to identify

the late stages (IX-XIII), plus the presence of meiotic sperma-

tocytes (Spcs) for stage XIV.4 Although this H&E-based

methodology is not as accurate as using the PAS-based char-

acteristics of the acrosome, it is easier to adapt to automated

digital technology and it provides sufficient stage recognition

to allow the pathologist to conduct a detailed, stage-aware

evaluation on toxicity screening studies up to 28 days duration

(as recommended in the Society of Toxicologic Pathology

[STP] Position Paper on Evaluation of Testes).1 If any stage-

specific abnormalities are detected in these short-term screen-

ing studies, then it may be necessary to perform additional

PAS-stained sections to study them in more detail.

To aid the pathologist in the staging of H&E-stained rat

testes, we have developed an algorithm that uses these and

other criteria to annotate individual tubules in digital scans of

testis sections. The staging algorithm was developed by using

deep learning5,6 and machine learning-based methods.7,8 Train-

ing of the software was performed by comparing the staging

results of the algorithm with the staging results of an expert

pathologist (DC) on a subset of H&E-stained testis images.

Annotations on individual tubules were generated by the algo-

rithm and were then checked and confirmed or corrected by the

pathologist. Progressive improvements on the algorithm cri-

teria were introduced until an acceptable degree of accuracy

and precision were achieved between the staging results of the

algorithm and the pathologist. Accuracy and precision were

assessed using the stage frequency distribution of the results.

The algorithm was then validated on a further subset of images

by the same pathologist, who reviewed each algorithm-

generated annotation and either confirmed or corrected the

annotation. In addition, stage frequency maps were generated

for the algorithm-generated staging data and for the

pathologist-generated staging data and were compared with the

stage frequency maps for PAS-stained testes that have been

published by Hess et al.9 This validated algorithm identifies

the spermatogenic stage of each tubule, thereby allowing the

pathologist to quickly evaluate the H&E-stained testis in a

stage-aware manner and rapidly calculate stage frequencies.

Materials and Methods

Animal Source and Testes Fixation

The testes used in the development of the staging algorithm

came from Wistar rats from a study conducted to collect in-life

and pathology data from untreated Wistar rats at different ages

(50 males/age-group). The study was performed at WuXi

AppTec (Suzhou) Co, Ltd. The Wistar rats were obtained from

BioLASCO Taiwan Co, Ltd and acclimated to standard labora-

tory conditions for a week before study start. The rats that were

used to provide testis sections for the development of the sta-

ging algorithm were 11 to 15 weeks of age at necropsy. They

were euthanized with isoflurane and observed for gross pathol-

ogy before tissues were collected.

Testes were fixed in modified Davidson’s fluid for 24 to

72 hours before being transferred to 10% neutral buffered

formalin for storage. Testes were trimmed (transversely), pro-

cessed, and embedded in paraffin blocks; sectioned at 3 to

5 microns, mounted on glass microscope slides, and stained

with H&E using standard procedures.

In total, 33 whole slide images (WSIs) of individual testes

(transverse section) were used from 33 rats; 20 images were

used for algorithm development and 13 images were used for

validating the algorithm.

Environmental Conditions and Ethical Use of Animals

The original study that provided the untreated rats was carried

out according to the principles stated in the Guide for the Care

and Use of Laboratory Animals, National Research Council

(2011) and The People’s Republic of China, Ministry of Sci-

ence & Technology, “Regulations for the Administration of

Affairs Concerning Experimental Animals,” 1988. The proto-

col was approved by the WuXi AppTec Institutional Animal

Care and Use Committee, and the test facility is Good Labora-

tory Practice certified and accredited by Association for

Assessment and Accreditation of Laboratory Animal Care

International.

The Wistar rats were housed in an individually ventilated

cage system using polysulfone cages, sterilized corncob was

provided as bedding material, and environment enrichment was

provided. Controlled environment was maintained (light:

12-hour light/12-hour dark, temperature: 20 �C-26 �C, relative

humidity: 30%-70%). Animals were supplied with rodent feed

from Beijing Keao Xieli Feed Co, Ltd and chlorinated, reverse

osmosis water, ad libitum.

Generation of Digital Images

Whole slide images of the H&E-stained testis sections were

generated using Leica SCN400 & Nanozoomer XR (Hama-

matsu) scanners at 40� original magnification. These digital

images were read by using the software libraries from Open-

Slide software, which is a vendor-neutral software for digital

pathology. Using this software, we extracted 512 � 512 � 3

dimension tiles at 2.5�, 10�, and 40� resolutions. The tiles

were chosen to segment out various parameters, that is, tubule,

lumen, and the different germ cells, namely RSps, elongating/

elongated spermatids (ESps), Spcs (pachytene), spermatogonia

(Spg), and meiotic figures (MFs). Only transversely sectioned

tubules were included in the staging classification, longitudin-

ally sectioned tubules were excluded because they usually

include more than one stage of the spermatogenic cycle and
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generally do not provide an adequate cross section of semini-

ferous epithelium for evaluation. This exclusion of longitudin-

ally sectioned tubules was performed by the algorithm on the

basis of the minor axis of the tubule.

Establishment of Staging Criteria

The 14-stage scheme of Leblond and Clermont2 for PAS-

stained testes was used for classifying the spermatogenic cycle

but the staging criteria described by Creasy and Chapin4 for

H&E-stained sections were used as the basis for the establish-

ment of criteria for the algorithm. The tubules were staged

using the criteria described in Table 1. These criteria were

formulated based on the presence or absence of certain germ

cells and RBs, along with their morphological features such as

shape, size, and relative position within the seminiferous

epithelium. The various germ cells used in the criteria were

RSps, ESps, pachytene Spcs, Spg. Also, the presence of RBs

and MFs were used. Due to the difficulties in separating out all

14 stages of spermatogenesis in H&E-stained sections (vs PAS-

stained sections), we decided to combine some of the stages. In

the initial stages of algorithm development, we combined stage

II with III and combined stage IV with V, thereby producing

12 stages rather than 14. In the later stages of development, we

also combined stage VI with IV and V, and we combined stage

XII with stage XIII, thereby producing 10 different staging

groups. Our rationale for doing this will be provided in the

Discussion section.

Data Sets

Tiles from 33 WSIs were used for the development of this

algorithm. The WSIs were divided into 2 mutually exclusive

data sets, namely a development data set and a validation data

set comprising tiles from 20 and 13 WSIs, respectively. The

staging algorithm was developed and trained using the devel-

opment data set and validated on the validation data set. The

development and training of the algorithm involved 2 tasks: (1)

semantic segmentation of the tubules, lumen, and various germ

cells; and (2) classification of the tubules into respective stage

groups. For the semantic segmentation task, the development

data set was further divided into 2 subsets namely a training

data set and a test data set comprising tiles from 15 and 5 WSIs,

respectively. Not all the tiles from the corresponding WSIs

were used for creating the training and test data sets but were

hand-picked, choosing most of the tiles from the tissue region

and only 2% to 3% of the tiles from the nontissue region. The

groundtruth marking on the selected tiles was performed by

in-house data marking experts under the guidance of expert

pathologists. The U-Net-based deep learning models were

trained using the tiles from the training data set and the test

data set. The trained models were then tested on the tiles from

the validation data set WSIs. Similarly, for the classification

task, the development data set was divided into 2 subsets

namely a training data set and a test data set comprising tubules

from 15 and 5 WSIs, respectively. The decision tree classifier

was trained on these tubules. The trained decision tree classifier

was then used to stage tubules in the validation data set WSIs

and these staging results were then verified or corrected by the

expert pathologist. The makeup of the data sets, the workflow,

and the output of the entire process are summarized in Figure 1

and discussed in more detail subsequently.

Development, Training, and Validation of the Algorithm:
Overview of Entire Process

The algorithm was developed through close cooperation

between the algorithm development team and a pathologist,

Table 1. Staging Criteria for H&E-Stained Testes.

Tubule stage Characteristic features

Stage I ESp heads have limited bundling; ESps are close to lumen with relatively few ESp moving toward the base; Spc size is smaller than
stage II-III; few Spg

Stage II-III ESp heads have frequent bundling; majority of ESp are in the mid epithelium region; Spc size is smaller than stage IV-V-VI; few
Spg

Stage IV-VI ESp heads have prominent bundling; majority of ESp are within the lower third of the epithelium; Spc size is larger than stage
II-III; large number of Spg compared to stage II-III

Stage VII RSps are round in shape; ESps are aligned around the lumen; size of RB smaller than stage VIII; position of RB is random with
respect to ESp heads

Stage VIII RSps are slightly eccentric; size of RB is larger than stage VII; position of RB is predominantly below ESp heads
Stage IX RSp starts to become elliptical to form early ESp; RB may be present at lumen and within the epithelium; mature ESps are not

present
Stage X Early ESps are elliptical and start to elongate; RB may present in lower third and base of epithelium; RSp and mature ESp are not

present
Stage XI ESps are banana shaped; RB may be present in lower third and at base of epithelium; no RSp.
Stage XII-XIII ESps are thinner than stage XI; Spc have less dense chromatin than stage XI; no RSp
Stage XIV ESps are similar to stage XII-XIII; at least 1 meiotic figure (MF) present; RSp may also be present.

Abbreviations: ESp, elongating/elongated spermatid; H&E, hematoxylin and eosin; MF, meiotic figures; RB, residual bodies; RSp, round spermatid; Spc, pachytene
spermatocyte; Spg, spermatogonia.
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expert in staging testes (DC). Initially, a small number of WSIs

from the development data set of images were staged by the

pathologist and each tubule was annotated with the appropriate

stage number. The annotated images were then reviewed with

the algorithm development expert (RG), and the main features

used for staging were discussed as well as the difficulties asso-

ciated with delineating where one stage ends and the next

begins. Based on these discussions, the algorithm development

team produced a preliminary algorithm using the presence of

RSps and Spcs, shape, and position of elongating spermatid

heads within the tubular epithelium, presence of RBs along

with their size, and presence of MFs. This algorithm was used

to annotate all the tubules in the 15 WSIs from the training data

set of images. The pathologist then reviewed the same tubules

and provided a separate annotation. At the end of this exercise,

each tubule had 2 annotations, 1 produced by the algorithm and

1 produced by the pathologist.

The tubular staging results of the algorithm were compared

with those of the pathologist and any major discrepancies for

particular stages were noted. In addition, the consistency of the

staging results was tested, by calculating the frequency distri-

bution of stages for each WSI. This was calculated for the

algorithm results and the pathologist’s results individually. The

frequency of each stage of the spermatogenic cycle is relatively

consistent between individual rats, and the frequency

distribution of stages in PAS-stained Sprague-Dawley testes

has been published by Hess et al.9 We compared the frequency

distribution of stages classified by the pathologist and by the

algorithm within a data set of H&E-stained testes against the

frequency distribution published by Hess et al9 in PAS-stained

testes to provide a gauge of consistency and accuracy. Follow-

ing identification of the main discrepancies between the sta-

ging results of the algorithm and the pathologist, it was decided

to add additional criteria to the algorithm to improve its accu-

racy. These included taking into account the relative numbers

of Spg and the relative size of pachytene Spcs in each tubule. In

addition, the position of the RBs with respect to the elongating

spermatid head at the tubular lumen was added as an additional

criterion for stages VII and VIII. Due to the difficulties of

separating stages XII and XIII and stages V and VI consistently

(both by the pathologist and the algorithm), it was decided to

pool these stages. So, the final 10 pools of stages consisted of

stages I, II-III, IV-VI, VII, VIII, IX, X, XI, XII-XIII, and XIV.

This new algorithm was then used to annotate the 5 WSIs in the

test data set of images and compared with the annotations

provided by the pathologist on the same data set.

This improved algorithm was then tested on the final vali-

dation data set of images. For the validation step, the algorithm

was used to annotate the tubules in the 13 WSIs in the valida-

tion data set and then the pathologist reviewed the annotations

Figure 1. Data sets and flow diagram illustrating the overall development, training, and validation of the staging algorithm. Data sets are
highlighted in orange, workflow tasks in blue, and output from the tasks in green. WSI ¼ whole slide image.
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and either confirmed the algorithm result or disagreed with the

result, in which case, the correct stage was provided by annota-

tion (Figure 2).

Algorithm Development: Technical Details

The staging algorithm was developed using deep learning and

machine learning methods based on those described by Ronne-

berger et al5 and Song and Lu.7 Our approach for automated

staging was broadly categorized into 3 steps:

1. Segmentation of individual tubules at 10� magnifica-

tion, stitching the 10� results at 2.5� magnification,

and then mapping them to 40� magnification.

2. Segmentation of the lumen and various germ cells (Spg,

Spcs, RSps, and ESps), MFs, and RBs from the mapped

tubules at 40�.

3. Generation of a 28-dimension feature vector correspond-

ing to each tubule and then training a decision tree-based

classifier using the feature matrix obtained thereon.

These steps are explained in more detail below.

Step 1. In the first step, accurate semantic segmentation of the

seminiferous tubules was carried out by training a U-Net-based

deep learning model on the tiles from the training data set. The

corresponding labeled tiles were generated by labelling

the data for 3 classes, that is, 1 label for the content inside the

tubule, second label for the content outside the tubule, and

the third label for the periphery of the tubule. The reason

behind such a labelling was to segment out the touching tubules

separately. For training of the tubule segmentation model, a

total of 1500 tiles at 10� magnification were selected from the

development data set by taking 1125 tiles from the training data

set (15 WSIs) and 375 tiles from the test data set (5 WSIs). The

training setup is discussed below in the Algorithm Training

section. The trained model was then tested on the tiles from

13 WSIs from the validation data set. As a single tile generally

contained more than one tubule and some tubules were not

complete at tile level, we stitched the 10� segmented output

tiles together at 2.5� magnification. Tile stitching was per-

formed at 2.5� magnification to avoid memory constraints in

stitching a full image at 10� magnification due to its larger

size. The individual connected components (tubules) were then

mapped and saved at 40� magnification to detect the various

germ cells present.

Step 2. In the second step, the lumen, various germ cells, and

RBs were segmented out. Here, the lumen (at 10� magnifica-

tion) and various germ cells (at 40� magnification) were seg-

mented out using U-Net-based deep learning models, whereas

the RBs were segmented out by using image processing-based

methodology. The lumen was labeled in such a way that the

RBs of stages VII and VIII were included as a part of the

lumen. For training the lumen segmentation model, a total of

783 tiles at 10� magnification were selected from the devel-

opment data set by taking 587 tiles from the training data set

and 196 tiles from the test data set. The output tiles of the

lumen segmentation model were stitched together at 2.5�mag-

nification and mapped to 40� magnification, corresponding to

individual tubules. The image processing method employed to

segment out RBs was applied only to the lumen output.

Two models were used to segment out the different germ

cells and meiotic bodies. The first model is a 6-class model

where the germ cells segmented out were RSps (stage I to stage

IX [round spermatids in stage IX ¼ step 9 spermatids that are

just starting to elongate] and stage XIV [round spermatids in

stage XIV are step 1 spermatids that may or may not be present

following the final meiotic division of secondary Spcs]), elon-

gating spermatids (stage X), Spg (wherever present), Spcs

(pachytene and secondary Spcs, wherever present), and MFs

(wherever present). For training this 6-class model, a total of

881 tiles at 40� magnification were selected from the devel-

opment data set by taking 661 tiles from the training data set

and 220 tiles from the test data set. The second model is a

binary model where elongated spermatids (stage I-stage VIII

and stage XI-stage XIV) were segmented out. For training this

binary model, a total of 788 tiles at 40� magnification were

selected from the development data set by taking 591 tiles from

the training data set and 197 tiles from the test data set. After

Figure 2. Tubules annotated by the algorithm and pathologist during
validation of the algorithm. Each appropriately sectioned tubule was
outlined using a different color, depending on the stage identification
assigned by the algorithm. The pathologist then examined each anno-
tated tubule and added an additional rectangular box annotation in the
center of the tubule to confirm or correct the algorithm result. Blue
rectangle ¼ pathologist agrees with the algorithm result. Red rectan-
gle¼ pathologist disagrees with the algorithm result. Yellow rectangle
¼ pathologist considers the tubule inadequate for staging.
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accurate detection of germ cells, they were mapped onto cor-

responding tubules at 40�.

Step 3. In the third step, a feature vector of 28 dimensions was

created, corresponding to each tubule present in the develop-

ment data set and the validation data set. A total of 9204 tubules

were present in the 20 WSIs of the development data set and

7502 tubules were present in the 13 WSIs of the validation data

set. The features corresponding to each tubule were formulated

based on presence or absence of certain germ cells along with

their morphological features such as shape, size, and relative

position as described in Table 1. The formulated features that

were developed for training the decision tree classifier are

provided in Table 2. A feature matrix of dimension 9204 �
28 was obtained for the tubules present in the development data

set and a decision tree classifier was trained using this feature

matrix. The training setup for the decision tree classifier is

described below in the algorithm training section.

Algorithm Training: Technical Details

Four U-Net-based deep learning models were trained to seg-

ment out the various parameters. In summary, one model was

trained for tubule segmentation (3 class models), 1 for lumen

segmentation (2 class models), 1 for ESp segmentation (2 class

models), and 1 for other germ cells (6 class models), as men-

tioned in the Algorithm Development section. The exact

architecture of the deep learning model is as shown in Figure

3. The network comprises downsampling and upsampling

information flow with 31 convolution layers, 4 transpose con-

volution layers, and 1 up-sampling using nearest neighborhood.

Similar to U-Net architecture, skip connections are added in the

network to ease the optimization during backpropagation of

gradients, hence eliminating the vanishing gradient problem.

In this network, we incorporated a multipath branched module,

namely an inception module10 for multiscale processing of

features in the encoder layer of the vanilla U-Net5 architecture

as shown in Figure 4. Beside this, we have also introduced a

Table 2. Formulated Features for Training the Decision Tree Classifier.

Feature Characteristics

NormRS Represents the normalized number of round spermatids present in the tubule.
NormES10 Represents the normalized number of elongating spermatids of stage X present in the tubule.
NormSpc Represents the normalized number of pachytene spermatocytes present in the tubule.
MeanDiaSpc Represents the mean diameter of the pachytene spermatocytes present in the tubule.
NumSpg Represents the number of spermatogonia present in the tubule.
NumMB Represents the number of meiotic bodies present in the tubule.
AvgAreaMB Represents the average area of meiotic bodies present in the tubule.
NumES Represents the total number of elongated spermatids present in the tubule.
PercESStage1 Represents the percentage of elongated spermatids belonging to stage I.
NumESAE1, NumESAE2 To detect how deeply the elongated spermatids have penetrated the epithelium, we have eroded the tubule

boundary twice. So, NumESAE1 and NumESAE2 represent the number of elongated spermatids left after first
erode and second erode respectively.

PercESAE1, PercESAE2 These 2 features represent the percentage of elongated spermatids after first and second erode, respectively.
NumESL Represents the number of elongated spermatids in lumen.
NumRB7, NumRB8 Represents the number of residual bodies present in the lumen belonging to stage VII and stage VIII. This

distinction between residual bodies of stage VII and stage VIII is made on the basis of their area.
PercRB7, PercRB8 These 2 features represent the percentage of residual bodies belonging to stage VII and stage VIII, respectively.
DecESLPerc, DecRB&Perc,

DecRB8Perc
To extract the information about the relative position of residual bodies and elongated spermatids in the lumen,

we have eroded the lumen boundary. These 3 features represent the decrease in their respective values after
the erosion.

NumES11to13 Represents the number of elongated spermatids belonging to stage XI-XIII
PercES11, PercES12, PercES13 To check the thickness of elongated spermatids to distinguish among tubules from stage XI-XIII, erosion

operation has been performed. So, PercES11, PercES12, and PercES13 represent the percentage of elongated
spermatids belonging to stages XI, XII, and XIII, respectively.

PercES11AGT100 Represents the percentage of elongated spermatids with area greater than 100 left after the erosion.
PercSpcCount13 Represents the percentage of pachytene spermatocytes belonging to stage XIII. This is decided on the basis

of chromatin density in spermatocytes.

Figure 3. Network architecture of modified U-NET used for seman-
tic segmentation of various parameters.
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residual-bottleneck module11 in the decoder layer to increase

the resolution and reduce the feature dimension as shown in

Figure 4.

To train these models, tiles were selected from the training

data set (75% of total tiles) and the test data set (25% of total

tiles). The model was developed in Keras framework with

tensorflow-backend where we have used Adam as an optimi-

zer, categorical cross-entropy as a loss function, batch size of 8,

and learning scheduler to set the learning rate. During training,

the starting learning rate was 0.001 and it was increased 1

decimal place for every 200 epochs. Every convolution layer

was initialized by Xavier initializer and every layer was fol-

lowed by a batch-normalization layer. Using the above-

mentioned training setup, the model was trained until it was

converged, where validation loss was incorporated to monitor

the convergence. After the segmentation of all the parameters,

the tile-level results at 10� magnification (results from tubule

and lumen segmentation models) were mapped to 40� magni-

fication and then all the results at 40�magnification (including

the results from the other 2 models) were saved tubule wise to

extract the 28-dimensional feature vector corresponding to

each tubule.

Secondly, a decision tree was incorporated to classify the

tubules into 10 pooled stages. A decision tree is a supervised

machine learning algorithm mainly used for classification

problems. It is simply a series of sequential decisions made

to reach a specific result. So, it makes a series of decisions

based on a set of features present in the data, which in our case

were count, position, shape, and size of various germ cells. The

sequence of attributes to be checked is decided, on the basis of

criteria like Gini impurity index (used in our case) or informa-

tion gain. All decision trees need stopping criteria. There are a

number of stopping criteria, namely maximum depth of the

decision tree (¼18 in our case), minimum samples at the node

for further split (¼2 in our case), minimum samples in the leaf

node required for a split (¼1 in our case), and so on. This

decision tree classifier was trained using scikit-learn libraries

in python. The learning and decision making by the trained

decision tree classifier are similar to those pathologists con-

sider while deciding on a particular stage. For example, stage

XIV has 455 instances in the training data and the majority of

the instances (327) have followed the decision path as shown in

Figure 5. The entire decision tree is too large to illustrate in its

entirety, but Figure 5 shows a branch of the decision tree clas-

sifier. Here the classifier decides, based on the presence of

meiotic bodies and whether there are RSps and elongated sper-

matids belonging to stage I. These are the same features that a

pathologist uses to make a decision when classifying stage XIV

tubules.

Algorithm Validation

We validated our trained algorithm on 13 WSIs from the vali-

dation data set. We used the same procedures as during the

training phase, whereby the algorithm-generated staging anno-

tations for each appropriately sectioned tubule were reviewed

by the same pathologist as in the training phase but in this case,

the pathologist either confirmed their agreement with the algo-

rithm stage or disagreed and added an annotation providing the

corrected stage. We used these data to generate a confusion

matrix and from this table, we calculated the various perfor-

mance metrics for the algorithm when compared with the

pathologist. In addition, we generated a stage frequency map

for the algorithm and pathologist-generated results and

Figure 4. Structure of (a) the inception module which is used for
multiscaling of features in the encoder layer of vanilla U-NET archi-
tecture. b, Structure of ResNet-bottleneck module which is used to
increase the resolution and reduce the feature dimension in the deco-
der layer of vanilla U-NET architecture.

Figure 5. One of the branches of the trained decision tree classifier
that shows 1 set of the decisions taken to classify a stage XIV tubule.
The decisions learned by the classifier are similar to the ones that a
pathologist takes.
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compared this with the stage frequency map for PAS-stained

rat testes published by Hess et al.9

Data Handling and Generation of Performance Metrics

To evaluate the performance of semantic segmentation, we

calculated the dice similarity coefficient (DSC) for all the seg-

mentation models. Dice similarity coefficient has been adopted

to validate the segmentation results. The value of a DSC ranges

from 0, indicating no spatial overlap between ground truth and

predicted output, to 1, indicating complete overlap between the

2 sets. Dice similarity coefficient is calculated by the formula:

DSC ¼ 2 � (overlapped region between ground truth and

predicted output)/(union of ground truth and predicted output).

Dice similarity coefficient for the 4 segmentation models is as

shown in Table 3. Dice similarity coefficient has been calcu-

lated only for the foreground classes present in the models, for

example, the DSC for the 6 class model is calculated only for

the 5 foreground classes (germ cells) and then the mean DSC

has been calculated by taking their average.

To evaluate the performance of the decision tree classifier,

we calculated the precision, recall (sensitivity), and f1-score

corresponding to each stage. The combined data for all stages

was then used to calculate the overall accuracy of the algorithm

when compared with the pathologist. Below are detailed defi-

nitions for the performance parameters:

True positive (TP): When a positive sample annotated by the

pathologist is truly predicted as positive by the algorithm.

For example, when a stage I tubule is predicted as stage I

by the algorithm.

True negative (TN): When a negative sample annotated by

the pathologist is truly predicted as negative by the algo-

rithm. For example, when a nonstage I tubule is predicted

as a stage other than stage I by the algorithm.

False positive (FP): When a negative sample annotated by

the pathologist is falsely predicted as positive by the

algorithm. For example, when a nonstage I tubule is pre-

dicted as stage I by the algorithm.

False negative (FN): When a positive sample annotated by

the pathologist is falsely predicted as negative by the

algorithm. For example, when a stage I tubule is pre-

dicted as a stage other than stage I by the algorithm.

Precision: Precision is a measure that tells us what propor-

tion of instances detected by the algorithm as positives,

were TPs, that is, precision ¼ TP/(TP þ FP).

Recall or sensitivity: Recall is a measure that tells us what

proportion of instances that actually were positives, were

detected by the algorithm as positives, that is, recall¼ TP/

(TP þ FN).

F1 score: F1 score combines both precision and recall using

the harmonic mean. F1 score ¼ 2 � precision � recall/

(precisionþ recall). A high value of f1 score represents a

high value for both precision and recall.

Accuracy: Accuracy is defined as the percentage of cor-

rectly classified instances, that is, (TP þ TN)/(TP þ
TN þ FP þ FN).

Results

Development and Training of the Algorithm

During the initial assessment and training phase of the project,

it became apparent that the basic criteria used by Creasy and

Chapin4 were insufficient on their own to allow automated

digital methodology to differentiate between stages. Their

basic criteria rely predominantly on the shape and position of

the ESps as they move through the tubular epithelium. Addi-

tional criteria, including the size and appearance of the accom-

panying Spcs, the relative numbers of Spg, and the size and

position of the RBs, were additional important features that

were incorporated into the algorithm. The main criterion used

to identify early stage tubules (stages I-VI) was the position of

the elongated (step 15-18) spermatid heads as they move from

the lumen in stage I, down through the epithelium during stages

II and III, arriving at the base of the epithelium in stages IV and

V, and then moving back up through the epithelium during

stage VI (Figure 6A-D). Not all elongated spermatids move

at the same rate and so there is some inconsistency in the level

that each bundle reaches within a tubule. Although the pathol-

ogist can overcome this inconsistency by making a subjective

decision on where the majority of the spermatid heads are

positioned, an algorithm requires more precise features or addi-

tional criteria to make an accurate stage determination. For this

reason, additional morphologic features including the relative

diameter of the pachytene Spcs and the relative numbers of Spg

were used to improve the staging accuracy of the early stages.

Due to the difficulties outlined above, it was found necessary to

combine some of the early stages to achieve adequate precision

and accuracy. Therefore, stages II and III, IV-VI, and XII and

XIII were combined. The features of the different stages are

illustrated in Figures 6, 7, and 8.

Table 3. Dice Similarity Index for 4 Segmentation Models.a

Parameters name Tubules segmentation Lumen segmentation Germ cells segmentation (6 classes) ESp segmentation

Number of tested tiles 62 62 60 60
Mean DSC 96.40 96.69 89.65 85.44

Abbreviations: DSC, dice similarity coefficient; ESp, elongating/elongated spermatid.
aDSC has been calculated only for the foreground classes present in the models, for example, the DSC for the 6 class model is calculated only for the 5 foreground
classes (germ cells) and then the mean DSC has been calculated by taking their average.
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The mid stages (VII and VIII) were identified and distin-

guished from one another, largely by the presence, position,

and size of the RBs (Figure 7A-D). For the later stages (stages

IX-XIII), the shape of the elongating (step 9-13) spermatid

heads was the main criterion used (Figure 8A-E). Due to the

fact that not all of the spermatid heads in a tubular cross section

will change shape at the same time, there was an element of

variability in staging these later stages. In addition, it was

difficult to clearly delineate the boundary between stage XII

and XIII based on the changing shape of the elongating sper-

matid head and the relative size of the pachytene Spc and so

these 2 stages were combined (Figure 8D and E).

Stage XIV can have a very variable appearance depending

on whether it is at the beginning, middle, or end of the stage. At

the beginning of stage XIV, the tubule mostly contains large

diakinetic Spcs, while in the middle of the stage (Figure 8F), it

contains a variable mixture of diakinetic Spcs, secondary Spcs,

and RSps, whereas at the end of the stage, it contains almost all

RSps. The only reliable feature is the presence of at least 1 MF

in the dividing primary or secondary Spcs and so this was used

as the primary criterion for stage XIV.

Particular problems were encountered when tubules were

transitioning between consecutive stages and contained fea-

tures of both stages. This made it difficult to establish user-

defined thresholds on various staging parameters, so it was

necessary to automate this. Hence, we trained a decision tree

classifier on the 28-dimensions feature vectors using methodol-

ogy based on Song and Lu.7

Validation of the Algorithm

Once the staging criteria had been improved and finalized

using the initial set of 20 testis images, the validation of the

algorithm was performed on a further set of 13 testis images. In

Figure 6. Histological appearance of tubules in stages I, II/III, and IV-VI. A, Stage I: ESp heads are close to the lumen and show limited bundling.
B, Stage II/III: ESp heads have started descending toward the base of the tubule in bundles. C, Stage IV-VI (mid): Most ESp heads are bundled and
close to the tubule base. D, Stage IV-VI (late): ESp heads are starting to return toward the lumen and there are increased numbers of B
spermatogonia (Spg) compared with stage II/III. H&E stain. ESp indicates elongating/elongated spermatid; H&E, hematoxylin and eosin.
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this study, we only included nearly round tubules for staging

analysis. We excluded those tubules sectioned longitudinally

because they often comprise more than one stage and are fre-

quently sectioned tangentially. From the 13 testis images, we

obtained 7502 tubules that met the qualifying criteria for sta-

ging analysis. As mentioned earlier, we pooled some of the

stages leaving us with 10 different classifications, that is, stages

I, II-III, IV-VI, VII, VIII, IX, X, XI, XII-XIII, and XIV. All the

tubules were then classified in one of the above-mentioned

categories by the algorithm, and these results were confirmed

or refuted by the pathologist (Table 4). After the algorithm was

run on all the tubules, we generated a confusion matrix, which

describes the performance of a classification model on a set of

test data for which the true values are known (in this case, the

true value being the stage called by the pathologist). From this

confusion matrix, we then calculated the various performance

metrics, that is, precision and recall. Precision refers to what

proportion of the positive identifications made by the algorithm

was actually positive (according to the pathologist), while

recall refers to what proportion of the actual positives (accord-

ing to the pathologist) was called positive by the algorithm.

Both the parameters, in some sense, represent the accuracy of

the algorithm. For a good classification model, both precision

and recall should be high; f1 score gives the combined infor-

mation about the precision and recall of a model such that a

high value of f1 score indicates high value for both precision

and recall. Comparison of the staging results obtained by the

algorithm versus those obtained by the pathologist is presented

in the confusion matrix in Table 5 and the performance metrics

for the algorithm in Table 6. Precision was �0.93, recall was

Figure 7. Histological appearance of tubules in stages VII and VIII. A, Stage VII (early): ESp heads are all at the lumen but RB formation is
rudimentary. This tubule is transitioning from stage VI. B, Stage VII (mid) ESp heads at the lumen with small RBs above and below ESp heads.
C, Stage VIII: left tubule is early stage VIII with large RBs around head of ESp. Right tubule is late stage VIII with large RBs below ESp heads and
reduced numbers of ESp (due to partial release). D, Transition between stage VIII and IX. Most but not all ESps have been released but RBs are still
at the lumen and RSps are just beginning to lose their round profile. H&E stain. ESp indicates elongating/elongated spermatid; H&E, hematoxylin
and eosin; RB, residual body; RSps, round spermatid.
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Figure 8. Histological appearance of tubules in stages IX, X, XI, XII/XIII, and XIV. A, Stage IX: RSps are just starting to become elliptical, RBs are
mostly at the base. B, Stage X: ESps are mostly elliptical (but note the variable shape). C, Stage XI: ESps are mostly banana shaped. D, Stage XII/XIII
(early): ESp heads have condensed and lengthened to form a scimitar shape. E, Stage XII/XIII (late): ESp heads are very thin and thread-like and the
pachytene spermatocytes are enlarged with sparse chromatin. F, Stage XIV (mid): tubule contains diakinetic Spc, SS, RSps, and MF. H&E stain. ESp
indicates elongating/elongated spermatid; H&E, hematoxylin and eosin; MF, meiotic figures; RB, residual body; RSps, round spermatid; Spcs,
spermatocytes; SS, secondary spermatocytes.
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�0.96, and f1-score was �0.94 (all stages considered), with

overall accuracy of the staging algorithm being 0.984. The

performance metrics demonstrate that there was very good

agreement between the staging results of the algorithm and the

pathologist. This was true for all the different stages evaluated.

Table 5 demonstrates that for the few tubules where there was a

difference in stage identification, the difference was largely

restricted to +1 stage.

To confirm that the staging criteria that we developed for the

H&E-stained testes provided similar stage frequencies to those

obtained from PAS-stained testis sections, we generated sta-

ging frequency tables using the data generated by the

Table 4. Stage frequencies (%) generated by the algorithm and the pathologist for individual rats during validation of the algorithm.

Stage I
Stage
II-III

Stage
IV-VI

Stage
VII

Stage
VIII

Stage
IX

Stage
X

Stage
XI

Stage
XII-XIII Stage XIV

No. of
tubules

RAT 1 Algorithm 13.8 6.8 21.2 19.0 13.2 3.2 2.2 3.4 13.2 3.8 499
Pathologist 13.8 6.8 21.0 18.8 13.4 3.2 2.2 3.4 13.6 3.6

RAT 2 Algorithm 12.3 6.8 19.3 20.4 9.7 4.6 1.3 3.5 16.4 5.7 544
Pathologist 12.1 6.8 19.5 19.9 10.7 4.2 1.3 3.7 16.2 5.7

RAT 3 Algorithm 13.5 5.6 19.3 17.2 8.9 4.6 2.9 3.9 19.1 4.9 586
Pathologist 13.0 5.8 19.1 17.4 8.9 4.6 2.9 3.9 18.9 5.5

RAT 4 Algorithm 17.9 5.7 16.3 16.8 8.8 3.5 3.0 5.0 17.3 5.7 565
Pathologist 17.3 6.0 16.3 16.5 9.2 3.5 3.2 5.0 17.0 6.0

RAT 5 Algorithm 13.4 6.0 18.5 19.9 10.2 5.5 2.8 3.7 16.4 3.7 599
Pathologist 13.2 5.8 18.7 19.9 10.2 5.5 2.8 3.7 16.2 4.0

RAT 6 Algorithm 18.5 5.9 16.7 19.1 9.9 2.9 3.1 3.1 14.7 6.2 455
Pathologist 18.5 5.9 16.7 19.1 9.7 3.1 3.1 3.1 14.5 6.4

RAT 7 Algorithm 16.5 6.5 18.0 20.1 10.4 4.5 2.3 3.8 12.1 5.8 556
Pathologist 16.7 5.9 18.7 19.8 10.6 4.3 2.3 3.8 11.9 5.9

RAT 8 Algorithm 15.6 7.8 17.7 18.7 10.6 3.5 2.1 4.0 15.6 4.4 706
Pathologist 16.0 7.2 17.8 18.7 10.6 3.5 2.1 4.1 15.4 4.4

RAT 9 Algorithm 12.5 9.4 18.9 15.0 13.0 4.6 1.4 4.3 14.6 6.2 561
Pathologist 12.7 8.9 19.3 14.8 13.0 4.6 1.4 4.3 14.6 6.4

RAT 10 Algorithm 15.1 9.2 21.0 14.5 8.8 3.2 3.9 4.1 14.4 5.7 557
Pathologist 15.6 8.3 21.4 14.2 9.2 3.2 3.9 4.1 14.2 5.9

RAT 11 Algorithm 13.3 8.6 16.8 21.0 9.3 5.7 2.5 4.8 13.1 4.8 558
Pathologist 12.9 8.2 17.2 20.8 9.7 5.6 2.5 5.0 12.9 5.2

RAT 12 Algorithm 14.9 7.6 17.7 19.9 9.5 3.0 2.3 4.2 15.4 5.4 643
Pathologist 14.9 7.6 17.7 19.9 9.5 3.0 2.3 4.2 15.2 5.6

RAT 13 Algorithm 12.6 6.7 20.8 19.9 7.1 3.9 2.1 4.8 15.9 6.2 673
Pathologist 13.4 6.4 20.2 19.6 7.6 3.7 2.1 4.6 15.8 6.7

Mean Algorithm 14.5 7.1 18.6 18.6 9.9 4.1 2.5 4.1 15.3 5.3 7502 (total)
Pathologist 14.6 6.9 18.7 18.4 10.1 4.0 2.5 4.1 15.2 5.5 7502 (total)

Standard error Algorithm 0.6 0.4 0.5 0.6 0.5 0.3 0.2 0.2 0.5 0.2
Pathologist 0.6 0.3 0.4 0.6 0.4 0.2 0.2 0.2 0.5 0.3

Range (min-max) Algorithm 12.3-18.5 5.6-9.4 16.3-21.2 14.5-21.0 7.1-13.2 2.9-5.7 1.3-3.9 3.1-5.0 12.1-19.1 3.7-6.2
Pathologist 12.1-18.5 5.8-8.9 16.3-21.4 14.2-20.8 7.6-13.4 3.0-5.6 1.3-3.9 3.1-5.0 11.9-18.9 3.6-6.7

Table 5. Confusion Matrix for Staging Results From Pathologist Versus Algorithm.a

Proposed algorithm

Expert pathologist

Stage No. I II-III IV-VI VII VIII IX X XI XII-XIII XIV

I 1071 10 1 0 0 0 0 0 0 9
II-III 20 497 19 0 0 0 0 0 0 0
IV-VI 3 12 1383 1 0 0 0 0 0 0
VII 0 0 3 1378 15 0 0 0 0 0
VIII 0 0 0 3 739 1 0 0 0 0
IX 0 0 0 1 4 300 0 0 0 0
X 0 0 0 0 0 0 183 1 0 0
XI 0 0 0 0 0 0 2 301 2 0

XII-XIII 0 0 0 0 0 0 0 5 1134 9
XIV 0 0 0 0 0 0 0 0 2 393

aBolded numbers denote number of tubules with agreement between pathologist and algorithm. Unbolded numbers denote algorithm staged tubules not confirmed
by pathologist.
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pathologist and the algorithm on the 13 testes (7502 tubules)

used in the validation study. This was compared with the

stage frequencies published by Hess et al9 who staged 15

PAS-stained testes (9,672 tubules) from Sprague-Dawley

rats. The results are detailed in Table 7 and illustrated in

Figures 9 and 10. Figure 9 illustrates the stage frequency

comparison between the algorithm and the pathologist in the

form of box plots, whereas Figure 10 illustrates this com-

parison plus the data from Hess et al, in the form of bar

graphs. The mean frequencies for the different stages were

broadly similar between the data sets, as was the individual

variation (range) of frequencies for the same stage between

individual rats

Discussion

Development of Staging Criteria for H&E-Stained Testes

Criteria for staging H&E-stained testes have previously been

published.4 The published criteria utilize the changing shape

and movement of the elongating spermatid (step 14-19 sper-

matids) within the seminiferous epithelium, along with the size

of the RB to distinguish between stages I-VIII. For stages

IX-XIII, the criteria utilize the changing shape of the elongat-

ing spermatid (step 9-13 spermatids), while stage XIV is recog-

nized by the presence of Spcs undergoing meiotic division.

Since the stages of the spermatogenic cycle form a continuum

and the development of all the spermatids within a stage will

not be in complete synchrony with one another, there are

always difficulties with deciding where 1 stage ends and the

next begins (Figure 7A-D). This is not a significant problem for

a pathologist, because they can make a subjective judgment

based on what most of the spermatids are doing in a tubule.

However, it does present a problem when trying to develop an

algorithm based on defined criteria. This proved to be a partic-

ular problem for stages I-VIII. To improve the accuracy and

precision of the algorithm, additional criteria were introduced

that took into account (1) the position of the RBs with respect

to the elongating spermatid head, (2) the relative size of the

pachytene Spcs, and (3) the relative numbers of Spg around the

base of the tubule. The final criteria used by the algorithm for

distinguishing between the stages are summarized in Table 1.

Testing for Accuracy and Consistency of Staging
and Rationale for Pooling Stages

During development of the algorithm, we needed to confirm

that the H&E method of staging conformed adequately with the

PAS method of staining (which is considered the “gold

standard”). To do this, we compared the stage frequency data

obtained by the pathologist and the algorithm with the pub-

lished stage frequency data for PAS-stained testes.9 Even using

the enhanced criteria described above, certain stages proved

difficult to separate with acceptable consistency (both by the

pathologist and by the algorithm). For example, stage II and III

are identified by the presence of bundles of ESp heads descend-

ing toward the base of the tubule, which they do at variable

rates. So, there is no distinctive feature to separate stage II from

III. During stage IV, V, and VI, the ESp heads are arriving at

the base of the tubule and then starting to ascend back to the

surface. However, we could not separate these 3 stages with an

acceptable degree of consistency. Similarly for stage XII and

XIII, it proved difficult to distinguish consistently between the

shape of the ESp heads in the two stages. Accuracy and con-

sistency were assessed on the basis of the stage frequency data

generated from the staging results of the algorithm and of the

pathologist (Figure 9) and comparing them with the mean,

range, and standard error data published by Hess et al9 for

PAS-stained sections (Table 7 and Figure 10). To alleviate this

problem, certain stages (II-III, IV-VI, and XII-XIII) were

pooled. Once these stages were pooled and compared with the

data from Hess et al,9 the overall mean frequency for each

group of stages was similar, as was the standard error and the

range of frequencies of a given stage between animals. Hess

et al performed his assessment on Sprague-Dawley rats

whereas this study used Wistar rats. Although mean stage fre-

quency differs slightly between strains, they are broadly

similar.

For the purpose of screening testes for abnormalities, such

as the presence or absence of specific populations of germ

cells, this pooling is not considered a problem because the

makeup of these adjacent stages is very similar. However, if

changes were observed in a specific cell population of these

pooled stages and accurate stage specificity of the change was

required, it may be necessary to perform a PAS stain to estab-

lish the exact stage(s) affected.

Performance Metrics of the Algorithm

The performance metrics for the algorithm results versus the

pathologist results (Table 6) shows very good agreement for all

the stages with precision, recall, and F1-score being �0.93 and

�0.96 and � 0.94, respectively, and overall accuracy of the

staging analysis was 0.984. Differences between the algorithm

and the pathologist diagnosis were generally limited to + 1

stage (Table 5), and most of the differences were in the early

Table 6. Stage-Wise Performance Metrics of the Algorithm.

Stage No. Precision Recall (sensitivity) f1 scorea No. of tubules

I 0.982 0.979 0.98 1094
II-III 0.929 0.958 0.943 519
IV-VI 0.989 0.984 0.986 1406
VII 0.987 0.996 0.992 1383
VIII 0.995 0.975 0.985 758
IX 0.984 0.997 0.99 301
X 0.995 0.989 0.992 185
XI 0.987 0.98 0.984 307
XII-XIII 0.988 0.996 0.992 1138
XIV 0.995 0.956 0.975 411
Accuracy 0.984

aHigh value of f1 score indicates high value for both precision and recall.
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part of the cycle (stages I-VI). The difficulties in distinguishing

these early stages are due to the inconsistent rate at which the

elongated spermatids descend from the lumen to the base of the

tubule and then return. For example, in stage II/III, the

elongating spermatid heads will begin to form bundles and will

start to descend toward the base of the tubule. However, in a

given cross section of tubule, a few will have already reached

the base and a few will still be at the lumen, so the stage is

Table 7. Comparison of Stage Frequency (%) Distribution in H&E-Staged Testes by the Algorithm and the Pathologist With Published Stage
Frequencies in PAS-Stained Testes9,a.

Stage I
Stage
II-III

Stage
IV-VI

Stage
VII

Stage
VIII

Stage
IX

Stage
X

Stage
XI

Stage
XII-XII

Stage
XIV

Mean stage frequency,
%

Pathologist 14.6 6.9 18.7 18.4 10.1 4.0 2.5 4.1 15.2 5.5
Algorithm 14.5 7.1 18.6 18.6 9.9 4.1 2.5 4.1 15.3 5.3
Hess et al

(PAS)
13.7 7.6 19.2 20.9 7.6 3.0 3.2 3.0 14.9 6.8

Range of frequency, % Pathologist 12.1-18.5 5.8-8.9 16.3-21.4 14.2-20.8 7.6-13.4 3.0-5.6 1.3-3.9 3.1-5.0 11.9-18.9 3.6-6.7
Algorithm 12.3-18.5 5.6-9.4 16.3-21.2 14.5-21.0 7.1-13.2 2.9-5.7 1.3-3.9 3.1-5.0 12.1-19.1 3.7-6.2
Hess et al

(PAS)
9.9-19.4 4.8-10.3 16.3-22.7 19.2-24.2 4.0-10.7 1.7-4.6 2.9-4.1 1.6-4.7 12.7-17.8 5.1-8.8

Standard error Pathologist 0.6 0.3 0.4 0.6 0.4 0.2 0.2 0.2 0.5 0.3
Algorithm 0.6 0.4 0.5 0.6 0.5 0.3 0.2 0.2 0.5 0.2
Hess et al

(PAS)
0.6 0.3 0.3 0.4 0.5 0.2 0.1 0.2 0.4 0.3

No. tubules examined Pathologist 7502
Algorithm 7502
Hess et al

(PAS)
9672

No. rats examined Pathologist 13
Algorithm 13
Hess et al

(PAS)
15

Abbreviations: H&E, hematoxylin and eosin; PAS, periodic acid-Schiff.
aData for staging of PAS-stained testes derived from Hess et al.9

Figure 9. Boxplot for the comparison of algorithm stage frequencies (%) with pathologist stage frequencies (%).
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decided on the basis of where the majority of the spermatid

heads lie (Figure 6B). The same is true when staging PAS-

stained testes, where the developing acrosomic granule in the

RSp is the main criterion used for staging. A proportion of

spermatids will show the feature while others will not. In addi-

tion, since the spermatogenic cycle represents a continuous mor-

phological development of germ cell features, identifying where

1 stage ends and the next begins is a subjective decision and not

a precise event, and so many of the tubules that were transition-

ing between 1 stage and the next provided a source of variability

between the pathologist and the algorithm. Even the same tran-

sitional tubule (eg, stage VI/VII as shown in Figure 7A) could be

staged as VI on 1 occasion and stage VII on another occasion by

the expert pathologist. To minimize the impact of this subjectiv-

ity on the final assessment of the algorithm, it was decided that

during the validation stage of algorithm development, the

pathologist would decide whether they agreed with the algorithm

annotation rather than provide a separate (subjective) “blinded”

annotation. Based on this assessment, the performance metrics

of the algorithm versus the pathologist and the similarity of the

stage frequency map between the H&E-stained testes and the

published frequencies of PAS-stained testes indicate that this

automated staging program provides an acceptable substitute for

manual staging of testes.

Utility of Automated Staging for the Pathologist

The usefulness of the automated technique lies in its ability to

provide the pathologist with a digital map of a transverse

section of testis that is annotated with the stage of spermato-

genesis for each tubular cross section. Some regulatory guide-

lines specifically recommend that testes should be examined

with an awareness of staging so that subtle changes in germ

cell populations or spermatid retention can be recognized

(reviewed by Lanning et al).1 In addition, the STP recommen-

dations for examination of testes and epididymides recom-

mend that testes from all shorter-term studies should be

examined with an awareness of staging.1 This generally

necessitates staining an additional section of testis with PAS

stain followed by a specially trained pathologist performing

the examination. This automated staging program is designed

to be used on routine H&E-stained sections and will provide

an image of the testis, ready annotated with the stage of each

tubule. With such an annotated image, the pathologist can

readily evaluate the testis with an “awareness of staging,” as

recommended by the guidelines. However, it is essential that

the pathologist understands the underlying histological basis

and the dynamics of staging so that they are able to recognize

abnormalities within the staged seminiferous tubules, because

the algorithm will not do this for them. An example of its

usefulness would be for the detection of spermatid retention.

This is a subtle but important change characterized by the

inappropriate presence of step 19 spermatids (which should

be released in stage VIII) still being present in stages IX-XII.

Tubules in these stages could be rapidly identified, selected,

and examined by the pathologist for the abnormality. How-

ever, it requires that the pathologist understands what step 19

spermatids look like and know that they should not be present

in stage IX-XII tubules. Another example would be if a cell

population such as pachytene Spcs was degenerating or

depleted from stage VII tubules. The pathologist needs to

recognize that there is an abnormality, that is, that germ cells

are degenerating or depleted, but the algorithm would be able

to identify which stage they were in and would be able to

select all remaining stage VII tubules so that the pathologist

could easily examine them.

Analysis of individual stage frequency could also be per-

formed very easily. The frequency of an individual stage or

pool of stages is proportional to the duration of the stage(s).

Therefore, if the frequency of a stage significantly increases

(compared with control values), it would suggest that the dura-

tion of the stage had increased. Similarly, if the frequency of a

stage decreases, it would suggest a decreased duration of the

stage. Although such a disturbance in the dynamics of the

spermatogenic cycle by a toxicant is a theoretical possibility,

the authors do not know of any published reports where this has

been demonstrated. However, it is also unusual for such a

quantitative analysis to be performed as a routine procedure.

Although the authors would not recommend performing a stage

frequency analysis as a routine procedure for a regulatory toxi-

city study, it is a rapid and useful tool that could be employed if

the pathologist has an impression that a certain stage (eg, stage

XIV) is more or less common in the test article-treated animals

than in the control. So, stage frequency analysis should be

considered more of an investigative tool than a routine

procedure.

The algorithm in its present format is a valuable tool to the

pathologist for automatically identifying stages of spermato-

genesis. However, this work could be extended to develop the

algorithm to identify subtle, stage-specific degeneration or

absence of germ cells, as well as the inappropriate presence

of germ cells (eg, spermatid retention) that might be caused by

testicular toxicants.

Figure 10. Stage frequency following staging by pathologist and algo-
rithm in H&E-stained testes, compared with stage frequency in PAS
stained. H&E indicates hematoxylin and eosin; PAS, periodic acid-
Schiff.
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